

AGENDA

- Purpose of the Presentation
- Project Background
- Need for Project
- Analysis of Alternatives
- Environmental Review Process
- Projected Impact on User Charges
- Anticipated Project Schedule
- Discussion, Q/A

PROJECT BACKGROUND

- Township provides public sewer service to the northern side of Fremont Lake
- Southern side of the lake relies on onsite septic/drainfields for disposal
 - » Soils not conducive for drainfields
 - » Very high groundwater
 - » Some septic/drainfields have failed, permits denied, some on pump and haul
 - » Lake water quality studies

3

PROJECT BACKGROUND | State State | St

NEED FOR THE PROJECT

- Soils not good for drainfields near the lake
- Very high groundwater
- Some septic/drainfields have failed
- Health Dept has denied some septic / drainfield permits or required special systems
- Some homes on pump and haul system
- Lake water quality studies

5

POPULATION PROJECTIONS / SERVICE AREA

- Current system serves approx. 143 homes
- Proposed Service Area includes 113 homes
- Estimated new service population is 296 people
- Wastewater flow from new service area is estimated at 20,700 gpd
- 9 vacant parcels in proposed service area
- Ultimate wastewater flow 22,400 gpd for new service area
- Total wastewater flow from existing and proposed service area is 66,800 gpd

OBJECTIVES FOR SRF PROJECT

- Protect surface water and environmental resources in the area
- Develop a solution that is modest in scope and cost, and supported by the community
- Provide facilities capable of consistent and reliable wastewater service

7

DEVELOPMENT OF ALTERNATIVES

- Alternative No. 1 No Action
- Alternative No. 2 Optimize Performance of Existing Systems
- Alternative No. 3 Gravity System
 - » Alternative 3A Gravity Sewer in Easements
 - » Alternative 3B Gravity Hybrid System with Gravity in Road
- Alternative No. 4 Low Pressure Grinder Pump System
- Alternative No. 5 Low Pressure STEP System

ALTERNATIVE NO. 1 – NO ACTION

- No Action
 - » No construction project
 - » Continued use of onsite septic / drainfields
 - » Likely to result in replacement septic systems for failed systems, denied permits and pump and hauls
 - » May result in continued degradation to the lake
 - » Does not meet Project Objectives

9

ALTERNATIVE NO. 2 – OPTIMIZE EXISTING

- Required to review as part of SRF program
- Look at upgrading to more advanced onsite disposal systems
- Not really feasible given the soils and high groundwater
- Would likely result in more pump and haul systems, which are costly
- Does not meet project objectives

ALTERNATIVE NO. 3A - GRAVITY

- Gravity sewer system similar to the existing Sheridan
 Township System serving the north side of the Lake
- Gravity sewer location would require acquisition of many easements
- Dewatering to install deeper, larger diameter sewers will make construction difficult/costly
- Larger intermediate pump station is needed
- Need to upgrade existing Township Lift Stations to handle more flow
- Estimated Project Cost: \$16 million

11

ALTERNATIVE NO. 3B - GRAVITY HYBRID

- Option to eliminate easements through residents' yards
- Gravity sewer located in road right-of-way would serve a portion of the system
- Many homes cannot be served by gravity sewer and would require STEP or grinder pumps
- Larger intermediate pump station is needed
- Need to upgrade existing Township Lift Stations to handle more flow
- Cost \$10.7 million

ALT. NO. 4 – LOW PRESSURE GRINDER

- Low pressure sewer small diameter pipe
- Individual grinder pump stations for every home
- Homeowner would be responsible for pipe to the grinder pump station
- Township would maintain grinder pump as part of system O&M costs
- Need to upgrade existing Township Lift Stations to handle more flow
- Estimate Project Cost: \$6.3 million

15

GRINDER PUMP LOW PRESSURE SEWER

17

ALT. NO. 5 – LOW PRESSURE STEP SYSTEM

- Low pressure sewer small diameter pipe
- Individual Septic Tank Effluent Pump (STEP) at every home
- Homeowner would be responsible for the pipe from the house to the septic tank
- Township would maintain STEP pump and include periodic pump outs as part of system O&M cost
- Need to upgrade existing Township Lift Stations to handle more flow
- Estimated Project Cost: \$6.1 million

ALTERNATIVES ANALYSIS

Alt. No. 3 - Gravity or Hybrid Gravity

- Pros
 - » Familiar System
 - » Minimal maintenance
- Cons
 - » Highest capital cost
 - » Larger diameter pipes
 - » Open trenching is disruptive & requires more restoration
 - » For 100% gravity many easements are required
 - » Higher risk of odors and Infiltration

21

ALTERNATIVES ANALYSIS

Alt. No. 4 – Grinder Pump Low Pressure Sewer

- Pros
 - » Pumps convey both solids and liquid waste
 - » Lower capital cost than Alt. No. 3
 - » Small diameter pipe can be directionally drilled
- Cons
 - » Larger less efficient pumps than STEP
 - » Higher electrical load requirements (240 V)
 - » Shorter pump life than STEP
 - » Pumps more susceptible to clogging
 - » Higher annual operations & maintenance than STEP

ALTERNATIVES ANALYSIS

Alt. No. 5 – STEP Pump Low Pressure Sewer

- Pros
 - » Lowest Capital Cost
 - » Small diameter pipe, can be directionally drilled
 - » High efficiency, low horsepower pumps
 - » Longer life than grinder pumps
 - » Greater storage volume during power outages
- Cons
 - » Less familiar system to residents
 - » Septic tanks need to be pumped out a regular basis

23

LOW PRESSURE CONSTRUCTION

RECOMMENDED ALTERNATIVE

- Alternative No. 5
 - » Lowest Capital Cost
 - » Lowest Net Present Worth
 - » Not anticipating any negative long-term environmental impacts due to the project
 - » Short term, temporary construction impacts

25

ALTERNATIVES ANALYSIS

Environmental Feature	Alternative No. 3	Alternative No. 4	Alternative No. 5
Agricultural and Open Space Lands	NSI	NSI	NSI
Air Quality	T	T.	T
Archeological Historic Sites	NSI	NSI	NSI
Drinking Water Supply Source	NA	NA	NA
Endangered or Threatened Species	NSI	NSI	NSI
Fauna and Flora Communities/ habitat	NSI	NSI	NSI
Floodplains	NSI	NSI	NSI
Great Lakes Shoreline	NA	NA	NA
Lakes and Streams	В	В	В
Parks and Recreational Facilities	NSI	NSI	NSI
Unique Features	NA	NA	NA
Wetlands	NSI	NSI	NSI
Wild & Scenic Rivers	NSI	NSI	NSI

Explanation of Abbreviations:
NSI: No Significant Impact
L: Low, But Measurable Impact
SI: Significant Impact

T: Temporary Impact B: Beneficial NA: Not Applicable

ALTERNATIVES ANALYSIS

Summary of Present Worth Cost Analysis						
Alternative	Capital Cost of Project	Annual OM&R Cost	Net Present Worth of OM&R Cost	Total Present Worth	Salvage Value	Net Present Worth
3b	\$10,658,000	\$75,000	\$1,230,000	\$11,888,000	\$1,360,300	\$10,527,700
4	\$6,303,000	\$84,000	\$1,370,000	\$7,673,000	\$1,023,900	\$6,649,100
5	\$6,046,000	\$29,000	\$470,000	\$6,516,000	\$1,023,900	\$5,492,100

27

USER CHARGE SUMMARY

- O&M charge is \$196 / quarter
- Capital Project would be financed through a Special Assessment District charge
- Financing through CWSRF
 - » 20-30 year loan term
 - » Subsidized interest rate (1.875 2.125% typical)
 - » \$6.1 million at 30-yrs, 2.125% is \$202.52 / month
- Total monthly fee is estimated at \$268 / month
- Could be reduced if CWSRF funding includes grant or principal forgiveness

USER CHARGE SUMMARY

Looking at other funding options to reduce cost burden of Special Assessment

- USDA Rural Development funding program
 - » 40-yr loan term, but higher interest rates (3-4%)
 - » USDA RD sometimes has grant amounts available
- EGLE Substantial Public Health Risk Grant
 - » Up to \$2.0 million in grant
 - » Specifically for addressing failing septic systems
 - » Financing remaining \$4.1 million over 30 years at 2.125% is \$135.53 assessment + \$196 / quarter = \$200.86/month

29

USER CHARGE EXAMPLES

Example User Charges at Various Financing Options					
User Charge Portion	CWSRF Loan Only, 30-yr, 2.125%	CWSRF 20% Grant, 30-yr Ioan	\$2 M SHRP Grant + SRF Loan	RD Loan Only, 40-yr, 3.0%	RD Loan with 20% Grant, 40-yr Ioan
Special Assessment Monthly	\$202.52	\$162.01	\$135.53	\$192.89	\$154.32
Quarterly O&M	\$196	\$196	\$196	\$196	\$196
Estimated Monthly Total	\$267.85	\$227.35	\$200.86	\$258.23	\$219.65

^{*}Final user charge will be determined by a Municipal Financial Advisor, once financing package is finalized

ANTICIPATED SCHEDULE

Task Description	Milestone Deadline (no later than)	
Submit Final SRF Project Plan to EGLE	May 2023	
Proceed with Survey / Preliminary Design	August/September 2023	
Begin Detailed Design	September/October 2024	
Finalize Design & Submit Permit Applications	May 2024	
Bidding	July 2024	
SRF Closing	August 2024	
Begin Construction	October 2024	
Complete Construction	December 2025	

31

QUESTIONS?

Please state your name and address for the public record.